$\qquad$

> Date:
$\qquad$ Per: $\qquad$
For each given table, give the table for its inverse and determine if the inverse is a function.
1.

| $\boldsymbol{x}$ | $\boldsymbol{f}(\boldsymbol{x})$ |
| :---: | :---: |
| 2 | 5 |
| 3 | 3 |
| 4 | 1 |
| 5 | -1 |
| 6 | -3 |
| 7 | -5 |


| $x$ | $f^{-1}(x)$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Is $f^{-1}(x)$ a function? If not, tell why not.
2.

| $\boldsymbol{x}$ | $\boldsymbol{g}(\boldsymbol{x})$ |
| :---: | :---: |
| -2 | -3 |
| -1 | -2 |
| 0 | -1 |
| 1 | -2 |
| 2 | -3 |
| 4 | -5 |



Is $g^{-1}(x)$ a function? If not, tell why not.

For each given graph, give the graph for its inverse and determine if the inverse is a function.
3.



Is the inverse a function? If not, tell why not.
4.



Is the inverse a function? If not, tell why not.

For each given equation, find the inverse equation and write it in inverse function notation.
5. $f(x)=\frac{1}{2} x+6$
6. $g(x)=\frac{x-4}{3}$

For each given equation, find the inverse equation and write it in inverse function notation.
7. $h(x)=2 x^{2}+6$
8. $\quad k(x)=\sqrt{x}+3$
9. Given the function $f(x)=x^{2}-2$. Model the function below.


Give the features of the function.
10. Give the inverse of the function in \#9.

Is the inverse a function? Explain.

11. Is an inverse always a function? What can you change so an inverse that is not a function can be a function?
12. Use composition of functions to determine if the given functions are inverses of each other.

$$
f(x)=\sqrt{2 x+6} \quad \text { and } \quad g(x)=\frac{1}{2} x^{2}-3
$$

13. What are the ways you can show that two functions are inverses of each other?
