AGS 3: Unit 1 Review

Name: _____

For each given table, give the table for its inverse and determine if the inverse is a function.

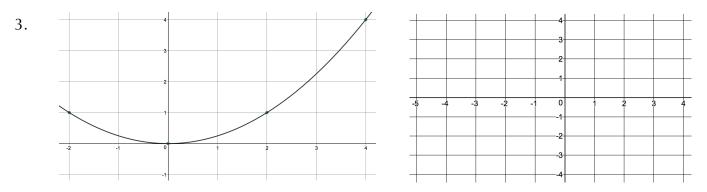
Date: _____ Per: _____

1.

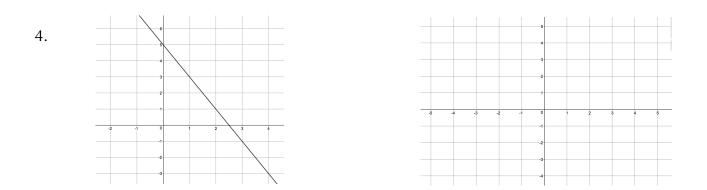
x	f(x)
2	5
3	3
4	1
5	-1
6	-3
7	-5

x	$f^{-1}(x)$

Is $f^{-1}(x)$ a function? If not, tell why not.


2.

x	g(x)
-2	-3
-1	-2
0	-1
1	-2
2	-3
4	-5

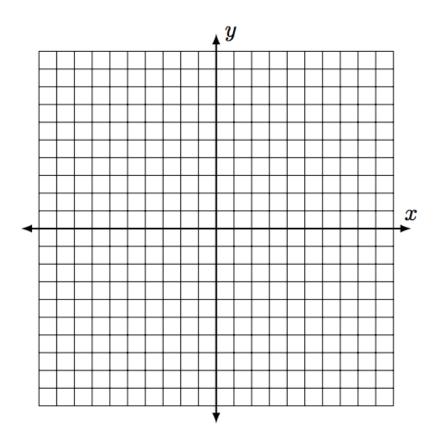

x	$g^{-1}(x)$

Is $g^{-1}(x)$ a function? If not, tell why not.

For each given graph, give the graph for its inverse and determine if the inverse is a function.

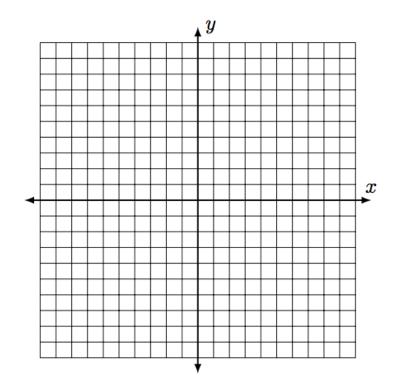
Is the inverse a function? If not, tell why not.

Is the inverse a function? If not, tell why not.


For each given equation, find the inverse equation and write it in inverse function notation.

5.
$$f(x) = \frac{1}{2}x + 6$$
 6. $g(x) = \frac{x-4}{3}$

For each given equation, find the inverse equation and write it in inverse function notation.


7. $h(x) = 2x^2 + 6$ 8. $k(x) = \sqrt{x} + 3$

9. Given the function $f(x) = x^2 - 2$. Model the function below.

Give the features of the function.

10. Give the inverse of the function in #9.

Is the inverse a function? Explain.

11. Is an inverse always a function? What can you change so an inverse that is not a function can be a function?

12. Use composition of functions to determine if the given functions are inverses of each other.

 $f(x) = \sqrt{2x+6}$ and $g(x) = \frac{1}{2}x^2 - 3$

13. What are the ways you can show that two functions are inverses of each other?